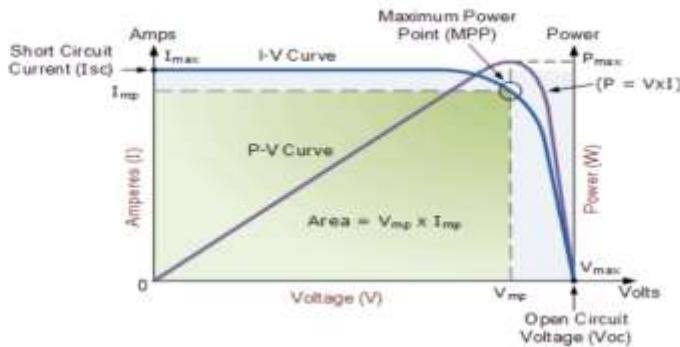


www.solarphystech.com

LED SOLAR SIMULATOR IV CHARACTERIZATION SYSTEM

SM-X15


SOLAR SIMULATOR IV CHARACTERIZATION SYSTEM

HOUSING OF SOLAR SIMULATOR ARE DESIGNED ACCORDING TO REQUESTED REQUIREMENTS

System includes (as in Image)

1. Led Solar simulator
2. Sample Holder
3. Reference cell
4. Software
5. Sourcemeter

Solar Cell I-V Characteristic Curve

TECHNICAL DATA AND CALIBRATION RESULTS

SPECTRAL MATCHING TO SUN

Solar Simulator

I-V Characterization System, Sourcemeter

Sample Holder

Connections

SOFTWAREs

Solar IV characterization Software

Solar Photo Transient Current Software

SPECIFICATIONS

- Spectral Match: Class A (0.75–1.25, 400–1100 nm)
- Spatial Uniformity: Class A ($\leq 2\%$)
- Temporal Instability: Class A ($\leq 2\%$ long-term, $\leq 0.5\%$ short term)
- Irradiance: 1200 W/m² (adjustable 500–1200 W/m²)
- Wavelength Range: 400–1100 nm (upgradable to 350–1800 nm)
- LED Lamp Type
- Lamp Lifetime: $\geq 10,000$ hours
- Beam Size: $\geq 100 \times 100$ mm (configurable)
- Power Supply: 230 VAC, 50 Hz
- Integrated with IV curve tracers for module performance testing.
- User-friendly control software for irradiance adjustment, spectrum tuning, and data logging
- Efficient internal cooling control (15 – 85 ° C)

- Tabletop or rail-mountable with adjustable sample stage
- Supplied with reference cell and calibration certificate traceable to international standards

Solar Physics Sourcemeter

Solarphys Tech

Voltage range: -20 V to +20 V

Voltage resolution: 0.001 V

Current range: 50 pA to 250 mA

Sample Holder

Connection probes: two probe connections

Probe IV Tester

Sample holder for solar cell

Movable probe tip

- Calibrated Reference solar cell to calibrate output to 1 SUN

Calibration procedure: (400-500nm, 500-600nm, 600-700nm, 700-800nm, 900-1100 nm which meets Class AAA specification for IEC 60904-9, JIS C 8912, and ASTM E 927-05 standards.

Software

I-V measurements

P-V measurements

InI-V measurements

Isc-P (irradiance) measurements

Sample Holder

Integrated Software for Solar Simulator and Sourcemeter Control

Solar IV Characterization software

After the testing of samples, the results should be provided in a Tabulated format as well as plotted automatically.

Solar Cell I-V Characterization System

This system analyze all photovoltaic and photoconducting characteristics of all solar cells such Dye sensitized solar cells, Quantum dots solar cells, Organic solar Cells, Perovskite Solar Cells, Solar Silicon Solar cells, Thin films solar Cells under 1000 W/m².

This system is a complete current-voltage (I-V) and power-voltage (P-V) measurement environment.

SOLAR SIMULATOR SYSTEM

- Solar spectral spectrum is observed on the screen of the solar simulator controller when the measurement is performed.
- The illumination area of the device is circular with a diameter of 100 mm

SOURCEMETER

- The sourcemeter must have a sourcemeter. The sourcemeter have an automatic current range and the current range should be in the range 50pA-250 mA.
- The voltage range of the sourcemeter is ranging from -20 V to +20 V.
- The intensity controller of solar simulator is 0- 1000 W/m²,0-1 SUN
- The solar simulator measures the IV characteristics of all solar cells (Dye sensitized solar cell, perovskite Solar Cells, Quantum dots solar cells, Organic solar cell, Silicon solar cells) and be able to perform the IV characteristics of the batteries under computer control.
- The solar simulator measures the current-voltage characteristics of the solar cell under 1 SUN
- The current-voltage (I-V) characteristics of the solar cell are measured with the software in the system. The solar cell's open circuit voltage V_{oc} , short circuit current I_{sc} , filling factor FF, maximum current I_{max} , maximum power P_{max} and efficiency η , series resistance R_s , shunt resistance R_p and characteristic resistance R_{ch} should be measured automatically. •
- A reference solar cell should be given with the solar simulator.
- The probe holder of the device should be measured in a way that the measurements of the solar cell

SPECIFICATIONS OF SOLAR SIMULATOR SYSTEM

The device comply with the ASTM E 927-05 for uniformity classification, temporal stability and spectral match

Light illumination intensity range is adjustable 1000 W / m²

Device is automatically measure;

- a. open circuit voltage (Voc)
- b. short circuit current (Isc)
- c. fill factor (FF)
- d. voltage at Pmax (Vmax)
- e. current at Pmax (Imax)
- f. maximum output power (Pmax)
- g. shunt resistance (Rsh)
- h. series resistance (Rs)
- i. solar cell characteristics resistance (Rch)
- j. photoresponse (RR)
- k. solar cell efficiency (n)

SOLAR PHYSICS TECHNOLOGIES

Certificate Compliance 07.09. 2024
 Product: Solar Simulator Model: SM 10x
 Applicable Standards: ASTM E 972-10, EIC 60904-9, JIS C 8912
 Spectral Fit SN: 112

Spectral Match

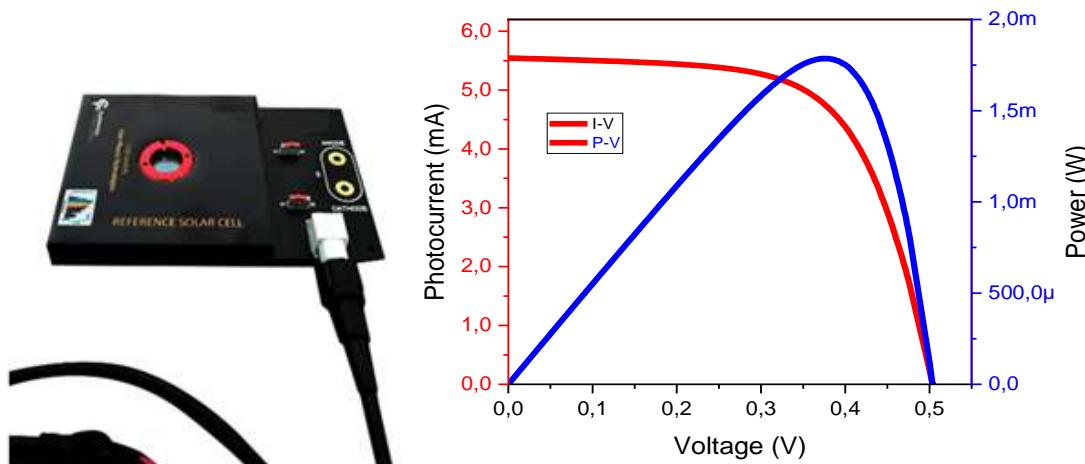
Band/Band	Class A limits	Error	Status
400-500nm	%25	-4.30%	Pass
500-600nm	%25	2.20%	Pass
600-700nm	%25	1.02%	Pass
700-800nm	%25	-2.50%	Pass
800-900nm	%25	-1.80%	Pass
900-1100nm	%25	3.40%	Pass
Non-uniformity			

Area	Class A limit	Non-uniformity	Status
40 mm diameter	2%	1.8%	Pass

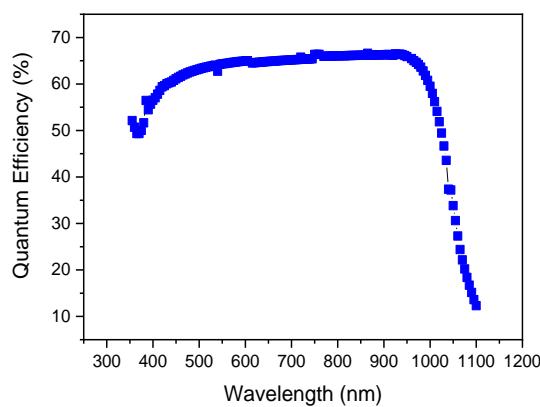
Irradiance instability

	Periyot/Period	Instability	Class limit	A	Status
STI	0.5s	0.36%	0.5%		Pass
LTI	10Min	0.98%	2.0%		Pass

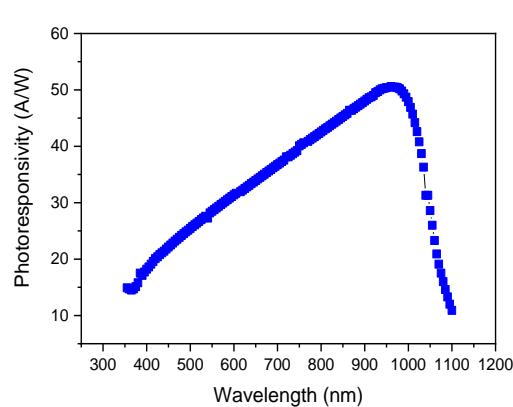
Approved by SOLAR PHYSICS TECHNOLOGIES



LED SOLAR SIMULATOR IV CHARACTERIZATION SYSTEM


This photovoltaic reference cell is designed for calibrating the irradiance of solar simulator used in testing solar cell or when assessing the performance of photovoltaic devices to determine the I-V characterization. The calibrated reference cell consists of a 10mm x 10mm monocrystalline silicon photovoltaic cell encased in a 100mm x 100mm enclosure with a KG3 filter. All our measurements are done according to the following IEC standards: IEC 904-1, IEC 904-2, IEC 904-7, IEC 904-8, IEC 904-9, IEC 60891, ASTM 1021, ASTM E973M. The calibrated solar reference cell includes a certificate of calibration, compatible set of connecting cables, and is certified in the following parameters:

Calibration condition: 1000 Wm⁻² (1 sun), AM1.5G, 25 °C



Enclosure dimensions: 100mm X 100mm X 10mm

Operating temperature 10 °C-40 °C

a) Quantum Efficiency spectra of Reference solar cell

b) Photoresponsivity spectra of solar cell

Calibration Report

Photovoltaic parameters under 1 SUN

I_{sc} (mA)	V_{oc} (V)
5.56	0.51

The certification is accredited by NIST to the ISO-17025 standard and is traceable both to the National Renewable Energy Laboratory (NREL), and to the International System of Units (SI).

